2.3 Problems

Problem 1. Derive the error formula for Newton's method:

$$
\left|p-p_{n+1}\right| \leq \frac{M}{2\left|f^{\prime}\left(p_{n}\right)\right|}\left|p-p_{n}\right|^{2}
$$

2.5 Problems

Problem 2. Steffensen's method is applied to a function $g(x)$ using $p_{0}^{(0)}=1, p_{2}^{(0)}=3$ to obtain $p_{0}^{(1)}=.75$. What is $p_{1}^{(0)}$?

2.6 Problems

Problem 3. Use Horner's method to evaluate $P(x)=7 x^{4}-2 x^{2}-5 x-3$ at $x=1$

3.1 Problems

Problem 4. Given $f(x)=x^{3}-4 x^{2}+4$, find the Lagrange interpolation polynomial of degree at most three using the nodes $x_{0}=-3, x_{1}=-1, x_{2}=1, x_{3}=5$

Problem 5. Let $x_{0}=-1, x_{1}=0, x_{2}=1$, define $f_{0}(x)=x^{2}-1, f_{1}(x)=2 x^{2}+3 x, f_{2}(x)=-x^{2}+2 x$. Evaluate these polynomials at x_{i}. Uses this to find a polynomial of degree at most 2 such that $g\left(x_{0}\right)=$ $-4, g\left(x_{1}\right)=-1$, and $g\left(x_{2}\right)=6$ without preforming any tedious computations.‘

